DLT MCP ByteBuddy Cookbook
This cookbook introduces how to use DLT (Data Loading Tool) MCP to build efficient data pipelines, enabling the AI assistant to process and transform various data formats.
Overview
DLT MCP provides powerful data processing and transformation capabilities, allowing ByteBuddy to:
- Extract data from multiple sources
- Perform complex data transformations
- Build scalable data pipelines
- Monitor data quality
Configuration
1. Install DLT MCP
bash
pip install dlt-mcp-server
# Or
npm install -g dlt-mcp-server2. Configure ByteBuddy
json
{
"mcpServers": {
"dlt": {
"command": "python",
"args": ["-m", "dlt_mcp_server"],
"env": {
"DLT_SECRET": "your-dlt-secret",
"DLT_PROJECT": "your-project-name"
}
}
}
}3. Data Source Configuration
python
# dlt_sources.py
import dlt
from dlt.sources.helpers import requests
def github_source(org_name: str, repo_name: str):
@dlt.resource(name="issues")
def get_issues():
url = f"https://api.github.com/repos/{org_name}/{repo_name}/issues"
response = requests.get(url)
yield from response.json()
@dlt.resource(name="pull_requests")
def get_pull_requests():
url = f"https://api.github.com/repos/{org_name}/{repo_name}/pulls"
response = requests.get(url)
yield from response.json()
return get_issues, get_pull_requestsUse Cases
Scenario 1: GitHub Data Analysis
typescript
// Analyze GitHub repository data
async function analyzeGitHubRepository(org: string, repo: string) {
// Load data
const loadData = await mcp.call("dlt.load", {
source: "github",
dataset: "github_analysis",
config: {
org_name: org,
repo_name: repo,
},
});
// Perform data transformation
const transformedData = await mcp.call("dlt.transform", {
input: loadData.dataset,
transformations: [
{
type: "filter",
condition: 'state == "open"',
},
{
type: "aggregate",
groupBy: ["author.login"],
aggregations: {
total_issues: "count(*)",
avg_comments: "avg(comments)",
},
},
],
});
return transformedData;
}Scenario 2: Real-Time Data Pipeline
typescript
// Build real-time data processing pipeline
class RealTimeDataPipeline {
async setupPipeline(config: any) {
const pipeline = await mcp.call("dlt.createPipeline", {
name: "real_time_pipeline",
destination: "bigquery",
dataset_name: "analytics",
});
// Add data source
await mcp.call("dlt.addSource", {
pipeline: pipeline.id,
source: {
name: "web_events",
type: "kafka",
config: {
bootstrap_servers: ["kafka1:9092", "kafka2:9092"],
topic: "user_events",
consumer_group: "analytics_group",
},
},
});
// Add transformation rules
await mcp.call("dlt.addTransformation", {
pipeline: pipeline.id,
transformation: {
name: "event_enrichment",
type: "map",
code: `
def enrich_event(event):
event['processed_at'] = datetime.utcnow()
event['session_id'] = generate_session_id(event['user_id'])
return event
`,
},
});
return pipeline;
}
async startMonitoring(pipelineId: string) {
return await mcp.call("dlt.monitor", {
pipeline: pipelineId,
metrics: ["throughput", "latency", "error_rate"],
alerts: {
error_rate_threshold: 0.05,
latency_threshold: 5000,
},
});
}
}Scenario 3: Data Quality Checks
typescript
// Implement data quality checks
class DataQualityChecker {
async checkDataQuality(datasetId: string) {
const qualityChecks = await mcp.call("dlt.runQualityChecks", {
dataset: datasetId,
checks: [
{
name: "completeness_check",
type: "not_null",
columns: ["user_id", "event_type", "timestamp"],
},
{
name: "uniqueness_check",
type: "unique",
columns: ["event_id"],
},
{
name: "range_check",
type: "range",
column: "event_value",
min: 0,
max: 10000,
},
{
name: "referential_integrity",
type: "foreign_key",
column: "user_id",
reference: "users.id",
},
],
});
const issues = qualityChecks.filter((check) => !check.passed);
return {
overall_quality: issues.length === 0 ? "excellent" : "needs_improvement",
passed_checks: qualityChecks.length - issues.length,
failed_checks: issues.length,
issues: issues.map((issue) => ({
check_name: issue.name,
issue_type: issue.issue_type,
affected_rows: issue.affected_rows,
recommendation: this.getRecommendation(issue),
})),
};
}
private getRecommendation(issue: any): string {
const recommendations = {
null_values: "Check data source or add default values",
duplicate_values:
"Implement deduplication logic or use unique constraints",
out_of_range: "Validate input range or add data validation",
broken_references: "Ensure referential integrity or clean orphaned data",
};
return recommendations[issue.issue_type] || "Needs further investigation";
}
}Data Source Connectors
1. Database Connectors
typescript
// Support multiple databases
class DatabaseConnector {
async connectPostgreSQL(config: any) {
return await mcp.call("dlt.connectDatabase", {
type: "postgresql",
host: config.host,
port: config.port,
database: config.database,
username: config.username,
password: config.password,
ssl: config.ssl || false,
});
}
async connectMongoDB(config: any) {
return await mcp.call("dlt.connectDatabase", {
type: "mongodb",
connection_string: config.connection_string,
database: config.database,
});
}
async connectRedis(config: any) {
return await mcp.call("dlt.connectDatabase", {
type: "redis",
host: config.host,
port: config.port,
password: config.password,
database: config.database || 0,
});
}
}2. API Connectors
typescript
// Generic API connector
class APIConnector {
async createRestApiSource(config: any) {
const sourceConfig = {
name: config.name,
type: "rest_api",
base_url: config.base_url,
headers: config.headers || {},
auth: config.auth,
pagination: config.pagination,
rate_limit: config.rate_limit,
};
return await mcp.call("dlt.createApiSource", sourceConfig);
}
async createGraphQLSource(config: any) {
const sourceConfig = {
name: config.name,
type: "graphql",
endpoint: config.endpoint,
headers: config.headers || {},
auth: config.auth,
query: config.query,
variables: config.variables,
};
return await mcp.call("dlt.createApiSource", sourceConfig);
}
}Data Transformation
1. Advanced Transformations
typescript
// Complex data transformation
class DataTransformer {
async transformUserData(userData: any[]) {
return await mcp.call("dlt.transform", {
input: userData,
operations: [
{
type: "map",
function: `
def transform_user(user):
# Clean and normalize data
user['email'] = user['email'].lower().strip()
user['full_name'] = f"{user['first_name']} {user['last_name']}"
user['age_group'] = categorize_age(user['age'])
user['registration_date'] = parse_date(user['created_at'])
return user
`,
},
{
type: "filter",
condition: "email is not None and age >= 18",
},
{
type: "aggregate",
groupBy: ["registration_date"],
aggregations: {
daily_registrations: "count(*)",
avg_age: "avg(age)",
gender_distribution: "count_distinct(gender)",
},
},
{
type: "window",
functions: {
cumulative_registrations:
"sum(daily_registrations) over (order by registration_date)",
registration_growth_rate:
"daily_registrations / lag(daily_registrations) over (order by registration_date)",
},
},
],
});
}
async detectAnomalies(data: any[], column: string) {
return await mcp.call("dlt.detectAnomalies", {
data,
method: "isolation_forest",
columns: [column],
contamination: 0.1,
features: ["z_score", "iqr_score", "modified_z_score"],
});
}
}2. Stream Processing
typescript
// Stream data processing
class StreamProcessor {
async setupStreamProcessing(config: any) {
const streamConfig = {
input_source: config.input_source,
output_destination: config.output_destination,
processing_window: config.window || "1m",
batch_size: config.batch_size || 1000,
checkpoint_interval: config.checkpoint_interval || 10000,
};
return await mcp.call("dlt.createStream", streamConfig);
}
async addStreamProcessor(streamId: string, processor: any) {
return await mcp.call("dlt.addStreamProcessor", {
stream: streamId,
processor: {
name: processor.name,
type: processor.type,
config: processor.config,
code: processor.code,
},
});
}
}Monitoring and Debugging
1. Performance Monitoring
typescript
// Data pipeline performance monitoring
class PipelineMonitor {
async monitorPipeline(pipelineId: string) {
const metrics = await mcp.call("dlt.getMetrics", {
pipeline: pipelineId,
timeRange: "1h",
metrics: [
"throughput",
"latency",
"error_rate",
"data_quality_score",
"resource_utilization",
],
});
return {
performance: {
avg_throughput: metrics.throughput.avg,
peak_throughput: metrics.throughput.max,
avg_latency: metrics.latency.avg,
p95_latency: metrics.latency.p95,
},
quality: {
error_rate: metrics.error_rate.current,
data_quality_score: metrics.data_quality_score.current,
failed_records: metrics.failed_records.total,
},
resources: {
cpu_usage: metrics.resource_utilization.cpu,
memory_usage: metrics.resource_utilization.memory,
disk_io: metrics.resource_utilization.disk,
},
};
}
async generateOptimizationSuggestions(pipelineId: string) {
const metrics = await this.monitorPipeline(pipelineId);
const suggestions = [];
if (metrics.performance.avg_latency > 5000) {
suggestions.push({
issue: "High latency detected",
suggestion:
"Consider increasing parallelism or optimizing transformations",
impact: "high",
});
}
if (metrics.quality.error_rate > 0.02) {
suggestions.push({
issue: "Elevated error rate",
suggestion: "Review data quality checks and add error handling",
impact: "medium",
});
}
if (metrics.resources.memory_usage > 0.8) {
suggestions.push({
issue: "High memory usage",
suggestion: "Increase memory allocation or optimize memory usage",
impact: "high",
});
}
return suggestions;
}
}Best Practices
1. Data Modeling
typescript
// Data model definition
const dataModels = {
user_events: {
schema: {
event_id: "string",
user_id: "string",
event_type: "string",
event_data: "json",
timestamp: "timestamp",
session_id: "string",
device_info: "json",
},
indexes: [
{ columns: ["user_id", "timestamp"] },
{ columns: ["event_type", "timestamp"] },
{ columns: ["session_id"] },
],
partitioning: {
column: "timestamp",
granularity: "daily",
},
},
};2. Error Handling
typescript
// Robust error handling
class RobustDataPipeline {
async executeWithRetry(operation: any, maxRetries: number = 3) {
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
return await operation();
} catch (error) {
if (attempt === maxRetries) {
await this.logError(error, operation);
throw error;
}
const delay = Math.pow(2, attempt) * 1000; // Exponential backoff
await new Promise((resolve) => setTimeout(resolve, delay));
}
}
}
async handleDataErrors(errors: any[]) {
const errorCategories = this.categorizeErrors(errors);
for (const [category, categoryErrors] of Object.entries(errorCategories)) {
switch (category) {
case "validation_errors":
await this.handleValidationErrors(categoryErrors);
break;
case "schema_mismatches":
await this.handleSchemaMismatches(categoryErrors);
break;
case "connection_errors":
await this.handleConnectionErrors(categoryErrors);
break;
}
}
}
}With DLT MCP, ByteBuddy can provide powerful data processing and pipeline building capabilities, enabling data engineers to quickly build reliable data infrastructure.