Custom Code RAG
Retrieval-Augmented Generation (RAG) is a technique that enhances AI models by retrieving relevant information before generating responses. ByteBuddy's Custom Code RAG feature allows you to optimize how the AI understands and interacts with your codebase.
Understanding Code RAG
What is RAG?
RAG combines two components:
- Retrieval: Finding relevant information from your codebase
- Generation: Using that information to generate better responses
How Code RAG Works in ByteBuddy
ByteBuddy's Code RAG process:
- Context Analysis: Analyze the current code context
- Relevant Code Retrieval: Find related code segments
- Documentation Integration: Include relevant documentation
- Enhanced Response Generation: Generate informed responses
Basic RAG Configuration
Enabling Code RAG
Enable RAG in your configuration:
# .bytebuddy/config.yaml
rag:
enabled: true
codeRag:
enabled: true
maxContextTokens: 8192
similarityThreshold: 0.7Simple Code RAG Setup
Basic configuration for getting started:
rag:
enabled: true
codeRag:
enabled: true
sources:
- type: "localFiles"
paths:
- "src/**/*.js"
- "src/**/*.ts"
exclude:
- "node_modules/**"
- "dist/**"
- "*.test.*"Advanced RAG Configuration
Multiple Data Sources
Configure multiple sources for RAG:
rag:
enabled: true
codeRag:
enabled: true
sources:
# Local source code
- type: "localFiles"
name: "source-code"
paths:
- "src/**/*.js"
- "src/**/*.ts"
exclude:
- "node_modules/**"
- "dist/**"
weight: 0.8 # Higher priority
# Documentation files
- type: "localFiles"
name: "documentation"
paths:
- "docs/**/*.md"
- "README.md"
weight: 0.6
# Test files
- type: "localFiles"
name: "tests"
paths:
- "tests/**/*.js"
- "tests/**/*.ts"
weight: 0.4
# External API documentation
- type: "http"
name: "api-docs"
url: "https://api.company.com/docs"
format: "json"
weight: 0.5Custom Retrieval Strategies
Define how code is retrieved and ranked:
rag:
enabled: true
codeRag:
enabled: true
retrievalStrategy:
type: "hybrid"
components:
- type: "semantic"
weight: 0.7
model: "embeddings"
- type: "lexical"
weight: 0.3
algorithm: "bm25"
ranking:
algorithm: "rrf" # Reciprocal Rank Fusion
weights:
semantic: 0.7
lexical: 0.3Semantic Code Indexing
Embedding Models
Configure embedding models for semantic search:
rag:
enabled: true
codeRag:
enabled: true
embeddings:
model: "openai/text-embedding-ada-002"
apiKey: "${OPENAI_API_KEY}"
batchSize: 100
cacheEnabled: true
# Alternative: local embeddings
# embeddings:
# model: "sentence-transformers/all-MiniLM-L6-v2"
# type: "local"Indexing Configuration
Control how code is indexed:
rag:
enabled: true
codeRag:
enabled: true
indexing:
chunkSize: 1000
overlap: 200
maxFileSize: "1MB"
updateFrequency: "1h"
preprocessing:
removeComments: false
extractFunctions: true
extractClasses: true
extractVariables: falseCustom RAG Pipelines
Defining Pipelines
Create custom RAG pipelines for specific use cases:
rag:
enabled: true
codeRag:
enabled: true
pipelines:
- name: "code-completion"
description: "Pipeline for code completion tasks"
stages:
- name: "context-extraction"
action: "extractContext"
parameters:
includeSurroundingLines: 50
- name: "relevant-code-retrieval"
action: "retrieveRelevantCode"
parameters:
maxResults: 10
similarityThreshold: 0.8
- name: "documentation-retrieval"
action: "retrieveDocumentation"
parameters:
maxResults: 5
- name: "context-assembly"
action: "assembleContext"
parameters:
maxTokens: 4096Pipeline Routing
Route different queries to different pipelines:
rag:
enabled: true
codeRag:
enabled: true
pipelineRouting:
- condition:
queryType: "code-completion"
pipeline: "code-completion"
- condition:
queryType: "bug-fixing"
pipeline: "bug-fixing-pipeline"
- condition:
queryType: "refactoring"
pipeline: "refactoring-pipeline"
- condition:
default: true
pipeline: "general-purpose"Performance Optimization
Caching Strategies
Optimize RAG performance with caching:
rag:
enabled: true
codeRag:
enabled: true
caching:
enabled: true
ttl: "24h"
maxSize: "1GB"
layers:
- type: "memory"
maxSize: "100MB"
- type: "disk"
path: "~/.bytebuddy/cache/rag"
maxSize: "1GB"
- type: "remote"
url: "redis://localhost:6379"
enabled: falseResource Management
Control resource usage:
rag:
enabled: true
codeRag:
enabled: true
resources:
maxConcurrency: 4
timeout: 30
memoryLimit: "512MB"
rateLimiting:
enabled: true
requestsPerMinute: 60
burstLimit: 10Integration with Other Features
RAG and Continuous AI
Combine RAG with Continuous AI:
continuousAI:
enabled: true
workflows:
- name: "smart-code-review"
actions:
- action: "reviewCode"
useRag: true
ragPipeline: "code-review-pipeline"
rag:
enabled: true
codeRag:
enabled: true
pipelines:
- name: "code-review-pipeline"
stages:
- name: "similar-code-finding"
action: "findSimilarCode"
- name: "best-practices-retrieval"
action: "retrieveBestPractices"
- name: "anti-patterns-check"
action: "checkAntiPatterns"RAG and Rules
Enhance rules with RAG context:
rules:
- name: "security-review"
prompt: |
Review this code for security issues, considering:
{{rag_context.security_patterns}}
Common vulnerabilities to check:
{{rag_context.common_vulnerabilities}}
useRag: true
ragContext:
- "security_patterns"
- "common_vulnerabilities"
- "framework_security_guidelines"Custom Processors
Pre-processing
Add custom pre-processing steps:
rag:
enabled: true
codeRag:
enabled: true
preprocessors:
- name: "code-normalizer"
type: "custom"
script: "./scripts/normalize-code.js"
- name: "comment-remover"
type: "builtin"
action: "removeComments"
- name: "framework-identifier"
type: "custom"
script: "./scripts/identify-framework.js"Post-processing
Add custom post-processing steps:
rag:
enabled: true
codeRag:
enabled: true
postprocessors:
- name: "relevance-filter"
type: "custom"
script: "./scripts/filter-by-relevance.js"
parameters:
minScore: 0.7
- name: "duplicate-remover"
type: "builtin"
action: "removeDuplicates"
- name: "format-enforcer"
type: "custom"
script: "./scripts/enforce-format.js"Example Configurations
Web Development RAG Setup
rag:
enabled: true
codeRag:
enabled: true
sources:
- type: "localFiles"
name: "frontend-code"
paths:
- "src/components/**/*.jsx"
- "src/pages/**/*.jsx"
- "src/hooks/**/*.js"
exclude:
- "node_modules/**"
- "build/**"
weight: 0.9
- type: "localFiles"
name: "backend-code"
paths:
- "src/controllers/**/*.js"
- "src/models/**/*.js"
- "src/routes/**/*.js"
weight: 0.8
- type: "localFiles"
name: "documentation"
paths:
- "docs/**/*.md"
- "README.md"
- "SPECIFICATION.md"
weight: 0.7
embeddings:
model: "openai/text-embedding-ada-002"
apiKey: "${OPENAI_API_KEY}"
indexing:
chunkSize: 800
overlap: 100
pipelines:
- name: "react-development"
stages:
- name: "component-finder"
action: "findSimilarComponents"
- name: "hook-recommender"
action: "recommendHooks"
- name: "best-practices"
action: "retrieveReactBestPractices"Data Science RAG Setup
rag:
enabled: true
codeRag:
enabled: true
sources:
- type: "localFiles"
name: "notebooks"
paths:
- "notebooks/**/*.ipynb"
- "scripts/**/*.py"
weight: 0.9
- type: "localFiles"
name: "data-pipelines"
paths:
- "src/data/**/*.py"
- "src/models/**/*.py"
weight: 0.8
- type: "http"
name: "ml-documentation"
url: "https://scikit-learn.org/stable/modules/"
format: "html"
weight: 0.6
embeddings:
model: "sentence-transformers/all-MiniLM-L6-v2"
type: "local"
preprocessing:
extractFunctions: true
extractClasses: true
extractDocstrings: true
pipelines:
- name: "ml-model-development"
stages:
- name: "algorithm-finder"
action: "findSimilarAlgorithms"
- name: "parameter-suggestions"
action: "suggestParameters"
- name: "evaluation-methods"
action: "retrieveEvaluationMethods"Monitoring and Analytics
RAG Metrics
Track RAG performance:
rag:
enabled: true
codeRag:
enabled: true
analytics:
enabled: true
metrics:
- "retrievalAccuracy"
- "generationQuality"
- "responseTime"
- "cacheHitRate"
logging:
level: "info"
outputFile: "~/.bytebuddy/logs/rag.log"
dashboards:
enabled: true
port: 8080Performance Profiling
Profile RAG performance:
# Profile RAG operations
bytebuddy profile --rag
# View detailed metrics
bytebuddy metrics --rag
# Generate performance report
bytebuddy report --rag --output rag-performance.mdTroubleshooting
Common Issues
Poor Retrieval Quality
- Check embedding model quality
- Adjust similarity thresholds
- Review chunking strategy
- Verify data sources are properly indexed
Slow Performance
- Enable caching
- Reduce max results
- Optimize chunk sizes
- Check resource limits
Missing Context
- Expand data sources
- Adjust retrieval strategies
- Fine-tune preprocessing
- Review exclusion patterns
Debugging Commands
# Test RAG retrieval
bytebuddy rag test --query "how to handle user authentication"
# View indexed documents
bytebuddy rag index list
# Rebuild index
bytebuddy rag index rebuild
# Check embedding quality
bytebuddy rag embeddings testBest Practices
Indexing Strategy
- Chunk Appropriately: Balance chunk size for context vs. specificity
- Update Regularly: Keep indices fresh with regular updates
- Exclude Noise: Remove irrelevant files from indexing
- Prioritize Sources: Weight important sources higher
Performance Optimization
- Use Caching: Enable multi-layer caching
- Limit Results: Retrieve only necessary information
- Preprocess Data: Clean and normalize data before indexing
- Monitor Resources: Keep track of memory and CPU usage
Quality Assurance
- Test Retrieval: Regularly test retrieval accuracy
- Review Results: Manually review generated responses
- Gather Feedback: Collect user feedback on RAG quality
- Iterate Improvements: Continuously refine RAG configuration
Next Steps
After configuring Custom Code RAG, explore these related guides:
- Continuous AI - Automate development workflows
- Plan Mode Guide - Complex task planning and execution
- Understanding Configs - Deep dive into all configuration options