自定义代码 RAG
代码检索增强生成(Code RAG)是 ByteBuddy 的核心功能之一,它允许 AI 智能地检索和理解您的代码库,从而提供更准确、更有针对性的代码建议。
什么是代码 RAG?
基本概念
代码 RAG 结合了:
- 检索(Retrieval): 从代码库中查找相关的代码片段
- 增强(Augmented): 使用检索到的代码上下文增强 AI 的理解
- 生成(Generation): 基于增强的上下文生成代码或回答
工作原理
- 代码索引: 将代码库分割成可检索的块
- 向量化: 将代码块转换为向量表示
- 相似度搜索: 根据查询找到最相关的代码片段
- 上下文注入: 将相关代码注入到 AI 的提示中
- 智能生成: 基于检索到的上下文生成响应
配置代码 RAG
基础配置
json
{
"rag": {
"enabled": true,
"indexing": {
"auto_index": true,
"index_interval": "daily",
"include_patterns": ["src/**/*", "lib/**/*"],
"exclude_patterns": ["node_modules/**", "dist/**", "*.test.*"]
},
"retrieval": {
"max_results": 10,
"similarity_threshold": 0.7,
"context_window": 4000
}
}
}高级配置
json
{
"rag": {
"vector_store": {
"type": "chroma",
"path": "./.bytebuddy/vector_store",
"embedding_model": "text-embedding-ada-002"
},
"chunking": {
"strategy": "semantic",
"chunk_size": 1000,
"chunk_overlap": 200,
"respect_code_boundaries": true
},
"filtering": {
"language_filters": true,
"dependency_aware": true,
"test_code_exclusion": false
}
}
}索引策略
代码分割策略
按文件分割
json
{
"chunking": {
"strategy": "file",
"max_file_size": "10KB",
"merge_small_files": true
}
}按函数分割
json
{
"chunking": {
"strategy": "function",
"include_comments": true,
"include_docstrings": true,
"max_function_size": 50
}
}语义分割
json
{
"chunking": {
"strategy": "semantic",
"embedding_model": "code-bert",
"similarity_threshold": 0.8,
"max_chunk_size": 1000
}
}索引优化
增量索引
json
{
"indexing": {
"mode": "incremental",
"watch_changes": true,
"batch_size": 100,
"index_delay": "5s"
}
}定期重建
json
{
"indexing": {
"mode": "scheduled",
"rebuild_interval": "weekly",
"full_rebuild_day": "sunday",
"rebuild_time": "02:00"
}
}检索优化
混合检索
json
{
"retrieval": {
"hybrid_search": true,
"keyword_weight": 0.3,
"semantic_weight": 0.7,
"rerank": true,
"rerank_model": "cross-encoder/ms-marco-MiniLM-L-6-v2"
}
}上下文过滤
json
{
"retrieval": {
"filters": {
"file_types": [".js", ".ts", ".py", ".java"],
"exclude_test_files": false,
"include_dependencies": true,
"date_range": {
"start": "2024-01-01",
"end": null
}
}
}
}多模态检索
json
{
"retrieval": {
"multimodal": {
"code_embeddings": true,
"text_embeddings": true,
"documentation_embeddings": true,
"comment_embeddings": true
}
}
}向量存储
ChromaDB 配置
json
{
"vector_store": {
"type": "chroma",
"host": "localhost",
"port": 8000,
"collection": "bytebuddy-code",
"persist_directory": "./chroma_db",
"embedding_function": "openai"
}
}Pinecone 配置
json
{
"vector_store": {
"type": "pinecone",
"api_key": "${PINECONE_API_KEY}",
"environment": "us-west1-gcp",
"index_name": "bytebuddy-code",
"dimension": 1536,
"metric": "cosine"
}
}本地存储
json
{
"vector_store": {
"type": "local",
"path": "./.bytebuddy/vectors",
"compression": true,
"encryption": false
}
}语言特定优化
Python 代码 RAG
json
{
"languages": {
"python": {
"parsing": {
"extract_classes": true,
"extract_functions": true,
"extract_docstrings": true,
"include_type_hints": true
},
"filters": {
"include_imports": false,
"include_decorators": true,
"filter_private_methods": true
}
}
}
}JavaScript/TypeScript 代码 RAG
json
{
"languages": {
"javascript": {
"parsing": {
"extract_components": true,
"extract_hooks": true,
"extract_types": true,
"include_javadoc": true
},
"filters": {
"include_node_modules": false,
"include_tests": false,
"filter_minified": true
}
}
}
}Java 代码 RAG
json
{
"languages": {
"java": {
"parsing": {
"extract_classes": true,
"extract_interfaces": true,
"extract_methods": true,
"include_annotations": true,
"include_javadoc": true
},
"filters": {
"include_package_private": false,
"include_synthetic": false,
"filter_getters_setters": true
}
}
}
}实时更新
文件监控
json
{
"watching": {
"enabled": true,
"debounce": 1000,
"patterns": ["src/**/*"],
"ignore_patterns": ["*.tmp", "*.log"],
"events": ["create", "modify", "delete"],
"auto_reindex": true
}
}Git 集成
json
{
"git_integration": {
"enabled": true,
"index_branches": ["main", "develop"],
"track_commits": true,
"pr_context": true,
"diff_analysis": true
}
}性能优化
缓存策略
json
{
"cache": {
"enabled": true,
"query_cache_size": 1000,
"result_cache_ttl": 3600,
"vector_cache_ttl": 86400,
"compression": true
}
}并发控制
json
{
"concurrency": {
"max_concurrent_queries": 10,
"queue_size": 100,
"timeout": 30000,
"batch_size": 50
}
}质量控制
相关性评估
json
{
"quality": {
"relevance_threshold": 0.7,
"diversity_boost": 0.1,
"freshness_weight": 0.2,
"quality_threshold": 0.8
}
}人工反馈
json
{
"feedback": {
"enabled": true,
"collect_user_ratings": true,
"auto_retrain": true,
"feedback_threshold": 0.6
}
}监控和分析
性能监控
json
{
"monitoring": {
"track_query_times": true,
"track_hit_rates": true,
"track_error_rates": true,
"dashboard_enabled": true
}
}分析报告
json
{
"analytics": {
"query_analysis": true,
"usage_patterns": true,
"performance_metrics": true,
"report_interval": "daily"
}
}安全考虑
数据隐私
json
{
"privacy": {
"encryption_at_rest": true,
"encryption_in_transit": true,
"anonymize_data": false,
"data_retention": "90d"
}
}访问控制
json
{
"access_control": {
"role_based_access": true,
"api_key_required": true,
"rate_limiting": true,
"audit_logging": true
}
}故障排除
常见问题
索引构建缓慢
json
{
"optimization": {
"parallel_processing": true,
"batch_size": 200,
"memory_limit": "2GB",
"temp_directory": "./temp"
}
}检索结果不准确
json
{
"tuning": {
"similarity_threshold": 0.6,
"rerank_enabled": true,
"context_expansion": true,
"query_expansion": true
}
}调试工具
bash
# 检查索引状态
bytebuddy rag status
# 测试检索
bytebuddy rag test --query="用户登录功能"
# 分析索引质量
bytebuddy rag analyze --quality
# 重建索引
bytebuddy rag rebuild --force最佳实践
索引策略
- 增量索引: 只索引变更的文件
- 智能分割: 尊重代码边界
- 定期清理: 删除过期的索引
- 监控质量: 跟踪检索准确性
性能优化
- 缓存结果: 缓存常用查询
- 并行处理: 多线程索引和检索
- 压缩存储: 减少存储空间
- 批量操作: 批量处理文件变更
质量保证
- 相关度调优: 调整相似度阈值
- 重排序: 使用重排序模型
- 人工反馈: 收集用户反馈
- 持续改进: 基于反馈优化
通过合理配置代码 RAG,您可以让 ByteBuddy 更好地理解您的代码库,提供更准确、更有针对性的 AI 辅助。