Development Data Deep Dive
ByteBuddy's development data system manages code context, project information, and development history to provide precise data support for AI-assisted development.
Data Types
Code Context Data
File Content
Current edited files and related files:
- Current File: File being edited
- Imported Files: Dependency files
- Related Files: Files in the same module
- Test Files: Corresponding test files
Code Structure
Structured information of code:
- AST: Abstract Syntax Tree
- Symbol Table: Variable, function, class definitions
- Call Graph: Function call relationships
- Dependency Graph: Module dependencies
Project Metadata
Project Configuration
# Project information in config.yaml
models:
- name: "project-aware-assistant"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4000Project information includes:
- Project Type: Web, mobile, backend, etc.
- Tech Stack: Frameworks and libraries used
- Coding Standards: Code style and standards
- Directory Structure: Project organization
Dependency Management
Dependency information sources:
- package.json: Node.js projects
- requirements.txt: Python projects
- pom.xml: Maven projects
- go.mod: Go projects
- Cargo.toml: Rust projects
Development History
Git History
models:
- name: "git-aware-assistant"
provider: "anthropic"
model: "claude-3-sonnet"
apiKey: "${ANTHROPIC_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.5
maxTokens: 4000Git data includes:
- Commit History: Code change records
- Branch Information: Development branch structure
- Tag Information: Version markers
- Diff Comparison: Code change comparison
File History
Individual file change history:
- Modification Records: Historical modifications
- Author Information: Modifier information
- Timestamps: Modification times
- Modification Reasons: Commit messages
Data Collection
Automatic Collection
ByteBuddy automatically collects the following data:
Editor Events
- File Open: Record opened files
- Cursor Position: Current editing position
- Selected Content: User-selected code
- Edit Operations: Insert, delete, modify
Project Scanning
- File Indexing: Build file index
- Dependency Analysis: Analyze project dependencies
- Structure Analysis: Parse project structure
Manual Configuration
Project Standards Configuration
# Configure project standards in config.yaml
models:
- name: "standard-aware-assistant"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat", "edit"]
defaultCompletionOptions:
temperature: 0.5
maxTokens: 4000Configurable standards:
- Naming Conventions: Variable, function naming rules
- Code Style: Indentation, brackets, etc.
- Comment Standards: Comment format and content requirements
- Documentation Requirements: Documentation writing standards
Data Processing
Context Construction
Intelligent Context Selection
models:
- name: "context-aware-model"
provider: "anthropic"
model: "claude-3-sonnet"
apiKey: "${ANTHROPIC_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.6
maxTokens: 8000Context selection strategies:
- Relevance Scoring: Calculate file relevance
- Priority Ordering: Order by importance
- Size Limiting: Control total context amount
- Dynamic Adjustment: Adjust based on task
Context Compression
Compression techniques:
- Summary Generation: Extract key information
- Deduplication: Remove duplicate content
- Priority Filtering: Keep only important information
- Hierarchical: Organize context in layers
Data Indexing
Vector Indexing
models:
# Embedding model for indexing
- name: "embedding-index"
provider: "openai"
model: "text-embedding-3-large"
apiKey: "${OPENAI_API_KEY}"
roles: ["embed"]
# Chat model uses indexed data
- name: "indexed-chat"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4000Indexing strategies:
- Code Block Indexing: Index functions, classes, etc.
- Documentation Indexing: Index comments and docs
- Dependency Indexing: Index imports and dependencies
- Real-time Updates: Update index on file changes
Symbol Indexing
Symbol types:
- Functions: Function definitions and calls
- Classes: Class definitions and inheritance
- Variables: Variable declarations and usage
- Types: Type definitions and references
Data Usage
RAG (Retrieval-Augmented Generation)
models:
# Embedding model
- name: "rag-embeddings"
provider: "openai"
model: "text-embedding-3-large"
apiKey: "${OPENAI_API_KEY}"
roles: ["embed"]
# Reranking model
- name: "rag-rerank"
provider: "cohere"
model: "rerank-english-v3.0"
apiKey: "${COHERE_API_KEY}"
roles: ["rerank"]
# Generation model
- name: "rag-generation"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4000RAG workflow:
- Query Embedding: Vectorize user question
- Similarity Search: Retrieve relevant code and docs
- Result Reranking: Optimize retrieval result order
- Context Enhancement: Add retrieval results to context
- Generate Answer: Generate response based on enhanced context
Code Search
Semantic Search
models:
- name: "semantic-search"
provider: "openai"
model: "text-embedding-3-large"
apiKey: "${OPENAI_API_KEY}"
roles: ["embed"]Search capabilities:
- Natural Language Queries: Describe needs in natural language
- Code Snippet Search: Find similar code
- Feature Search: Search code by functionality
- Cross-Project Search: Search across multiple projects
Exact Search
Traditional search methods:
- Text Matching: Exact text search
- Regular Expressions: Pattern matching
- Symbol Lookup: Search by symbol name
- Reference Finding: Find symbol references
Data Security
Privacy Protection
Configure privacy protection:
- Local Processing: Prioritize local models
- Data Filtering: Filter sensitive information
- Encrypted Transmission: Use HTTPS/TLS
- Access Control: Limit data access
Local Model Configuration
models:
# Use local models to protect privacy
- name: "private-assistant"
provider: "ollama"
model: "llama2"
apiBase: "http://localhost:11434"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2000Local model advantages:
- Complete Privacy: Data stays local
- No Network Dependency: Work offline
- Cost Savings: No API call fees
- Full Control: Complete data control
Best Practices
1. Data Organization
- Keep project structure clear
- Use meaningful naming
- Add sufficient comments and documentation
- Maintain updated README
2. Context Management
- Regularly clean irrelevant files
- Optimize file sizes
- Organize dependencies properly
- Use .gitignore to exclude irrelevant files
3. Performance Optimization
- Enable incremental indexing
- Use efficient data structures
- Implement caching strategies
- Limit context size
4. Security Considerations
- Use local models for sensitive data
- Configure data filtering rules
- Regularly review data access
- Comply with data protection regulations
Environment Variables
# ~/.bashrc or ~/.zshrc
export OPENAI_API_KEY="your-openai-api-key"
export ANTHROPIC_API_KEY="your-anthropic-api-key"
export COHERE_API_KEY="your-cohere-api-key"Through effective development data management, ByteBuddy can provide more accurate and relevant AI assistance, significantly improving development efficiency.