Skip to content

Development Data Deep Dive

ByteBuddy's development data system manages code context, project information, and development history to provide precise data support for AI-assisted development.

Data Types

Code Context Data

File Content

Current edited files and related files:

  • Current File: File being edited
  • Imported Files: Dependency files
  • Related Files: Files in the same module
  • Test Files: Corresponding test files

Code Structure

Structured information of code:

  • AST: Abstract Syntax Tree
  • Symbol Table: Variable, function, class definitions
  • Call Graph: Function call relationships
  • Dependency Graph: Module dependencies

Project Metadata

Project Configuration

yaml
# Project information in config.yaml
models:
  - name: "project-aware-assistant"
    provider: "openai"
    model: "gpt-4"
    apiKey: "${OPENAI_API_KEY}"
    roles: ["chat"]
    defaultCompletionOptions:
      temperature: 0.7
      maxTokens: 4000

Project information includes:

  • Project Type: Web, mobile, backend, etc.
  • Tech Stack: Frameworks and libraries used
  • Coding Standards: Code style and standards
  • Directory Structure: Project organization

Dependency Management

Dependency information sources:

  • package.json: Node.js projects
  • requirements.txt: Python projects
  • pom.xml: Maven projects
  • go.mod: Go projects
  • Cargo.toml: Rust projects

Development History

Git History

yaml
models:
  - name: "git-aware-assistant"
    provider: "anthropic"
    model: "claude-3-sonnet"
    apiKey: "${ANTHROPIC_API_KEY}"
    roles: ["chat"]
    defaultCompletionOptions:
      temperature: 0.5
      maxTokens: 4000

Git data includes:

  • Commit History: Code change records
  • Branch Information: Development branch structure
  • Tag Information: Version markers
  • Diff Comparison: Code change comparison

File History

Individual file change history:

  • Modification Records: Historical modifications
  • Author Information: Modifier information
  • Timestamps: Modification times
  • Modification Reasons: Commit messages

Data Collection

Automatic Collection

ByteBuddy automatically collects the following data:

Editor Events

  • File Open: Record opened files
  • Cursor Position: Current editing position
  • Selected Content: User-selected code
  • Edit Operations: Insert, delete, modify

Project Scanning

  • File Indexing: Build file index
  • Dependency Analysis: Analyze project dependencies
  • Structure Analysis: Parse project structure

Manual Configuration

Project Standards Configuration

yaml
# Configure project standards in config.yaml
models:
  - name: "standard-aware-assistant"
    provider: "openai"
    model: "gpt-4"
    apiKey: "${OPENAI_API_KEY}"
    roles: ["chat", "edit"]
    defaultCompletionOptions:
      temperature: 0.5
      maxTokens: 4000

Configurable standards:

  • Naming Conventions: Variable, function naming rules
  • Code Style: Indentation, brackets, etc.
  • Comment Standards: Comment format and content requirements
  • Documentation Requirements: Documentation writing standards

Data Processing

Context Construction

Intelligent Context Selection

yaml
models:
  - name: "context-aware-model"
    provider: "anthropic"
    model: "claude-3-sonnet"
    apiKey: "${ANTHROPIC_API_KEY}"
    roles: ["chat"]
    defaultCompletionOptions:
      temperature: 0.6
      maxTokens: 8000

Context selection strategies:

  • Relevance Scoring: Calculate file relevance
  • Priority Ordering: Order by importance
  • Size Limiting: Control total context amount
  • Dynamic Adjustment: Adjust based on task

Context Compression

Compression techniques:

  • Summary Generation: Extract key information
  • Deduplication: Remove duplicate content
  • Priority Filtering: Keep only important information
  • Hierarchical: Organize context in layers

Data Indexing

Vector Indexing

yaml
models:
  # Embedding model for indexing
  - name: "embedding-index"
    provider: "openai"
    model: "text-embedding-3-large"
    apiKey: "${OPENAI_API_KEY}"
    roles: ["embed"]

  # Chat model uses indexed data
  - name: "indexed-chat"
    provider: "openai"
    model: "gpt-4"
    apiKey: "${OPENAI_API_KEY}"
    roles: ["chat"]
    defaultCompletionOptions:
      temperature: 0.7
      maxTokens: 4000

Indexing strategies:

  • Code Block Indexing: Index functions, classes, etc.
  • Documentation Indexing: Index comments and docs
  • Dependency Indexing: Index imports and dependencies
  • Real-time Updates: Update index on file changes

Symbol Indexing

Symbol types:

  • Functions: Function definitions and calls
  • Classes: Class definitions and inheritance
  • Variables: Variable declarations and usage
  • Types: Type definitions and references

Data Usage

RAG (Retrieval-Augmented Generation)

yaml
models:
  # Embedding model
  - name: "rag-embeddings"
    provider: "openai"
    model: "text-embedding-3-large"
    apiKey: "${OPENAI_API_KEY}"
    roles: ["embed"]

  # Reranking model
  - name: "rag-rerank"
    provider: "cohere"
    model: "rerank-english-v3.0"
    apiKey: "${COHERE_API_KEY}"
    roles: ["rerank"]

  # Generation model
  - name: "rag-generation"
    provider: "openai"
    model: "gpt-4"
    apiKey: "${OPENAI_API_KEY}"
    roles: ["chat"]
    defaultCompletionOptions:
      temperature: 0.7
      maxTokens: 4000

RAG workflow:

  1. Query Embedding: Vectorize user question
  2. Similarity Search: Retrieve relevant code and docs
  3. Result Reranking: Optimize retrieval result order
  4. Context Enhancement: Add retrieval results to context
  5. Generate Answer: Generate response based on enhanced context
yaml
models:
  - name: "semantic-search"
    provider: "openai"
    model: "text-embedding-3-large"
    apiKey: "${OPENAI_API_KEY}"
    roles: ["embed"]

Search capabilities:

  • Natural Language Queries: Describe needs in natural language
  • Code Snippet Search: Find similar code
  • Feature Search: Search code by functionality
  • Cross-Project Search: Search across multiple projects

Traditional search methods:

  • Text Matching: Exact text search
  • Regular Expressions: Pattern matching
  • Symbol Lookup: Search by symbol name
  • Reference Finding: Find symbol references

Data Security

Privacy Protection

Configure privacy protection:

  • Local Processing: Prioritize local models
  • Data Filtering: Filter sensitive information
  • Encrypted Transmission: Use HTTPS/TLS
  • Access Control: Limit data access

Local Model Configuration

yaml
models:
  # Use local models to protect privacy
  - name: "private-assistant"
    provider: "ollama"
    model: "llama2"
    apiBase: "http://localhost:11434"
    roles: ["chat"]
    defaultCompletionOptions:
      temperature: 0.7
      maxTokens: 2000

Local model advantages:

  • Complete Privacy: Data stays local
  • No Network Dependency: Work offline
  • Cost Savings: No API call fees
  • Full Control: Complete data control

Best Practices

1. Data Organization

  • Keep project structure clear
  • Use meaningful naming
  • Add sufficient comments and documentation
  • Maintain updated README

2. Context Management

  • Regularly clean irrelevant files
  • Optimize file sizes
  • Organize dependencies properly
  • Use .gitignore to exclude irrelevant files

3. Performance Optimization

  • Enable incremental indexing
  • Use efficient data structures
  • Implement caching strategies
  • Limit context size

4. Security Considerations

  • Use local models for sensitive data
  • Configure data filtering rules
  • Regularly review data access
  • Comply with data protection regulations

Environment Variables

bash
# ~/.bashrc or ~/.zshrc
export OPENAI_API_KEY="your-openai-api-key"
export ANTHROPIC_API_KEY="your-anthropic-api-key"
export COHERE_API_KEY="your-cohere-api-key"

Through effective development data management, ByteBuddy can provide more accurate and relevant AI assistance, significantly improving development efficiency.