NVIDIA
NVIDIA provides enterprise-grade AI inference services, leveraging its powerful GPU technology stack to provide high-performance support for large-scale AI applications.
Supported Models
LLaMA Series
- nv-llama2-70b - LLaMA 2 70B model
- nv-llama2-13b - LLaMA 2 13B model
- nv-llama2-7b - LLaMA 2 7B model
Mistral Series
- nv-mistral-7b - Mistral 7B model
- nv-mixtral-8x7b - Mixtral 8x7B model
Other Models
- nv-code-llama-34b - Code LLaMA model
- nv-yi-34b - Yi 34B model
Configuration
Basic Configuration
Configure in config.yaml or ~/.bytebuddy/config.yaml:
yaml
models:
- name: "nvidia-llama"
provider: "nvidia"
model: "nv-llama2-70b"
apiKey: "${NVIDIA_API_KEY}"
roles: ["chat", "edit"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4096Enterprise Configuration
yaml
models:
- name: "nvidia-enterprise"
provider: "nvidia"
model: "nv-mixtral-8x7b"
apiKey: "${NVIDIA_API_KEY}"
roles: ["chat", "edit"]
defaultCompletionOptions:
temperature: 0.5
maxTokens: 8192Multi-Model Configuration
yaml
models:
- name: "nvidia-llama-70b"
provider: "nvidia"
model: "nv-llama2-70b"
apiKey: "${NVIDIA_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4096
- name: "nvidia-code"
provider: "nvidia"
model: "nv-code-llama-34b"
apiKey: "${NVIDIA_API_KEY}"
roles: ["edit", "apply"]
defaultCompletionOptions:
temperature: 0.2
maxTokens: 2048Configuration Fields
Required Fields
- name: Unique identifier for the model configuration
- provider: Set to
"nvidia" - model: Model name
- apiKey: NVIDIA API key
Optional Fields
- roles: Model roles [
chat,edit,apply,autocomplete] - defaultCompletionOptions:
temperature: Control randomness (0-1)maxTokens: Maximum tokenstopP: Nucleus sampling parametertopK: Sampling candidates countrepetitionPenalty: Repetition penalty
Environment Variables
bash
# ~/.bashrc or ~/.zshrc
export NVIDIA_API_KEY="your-nvidia-api-key"Getting API Key
- Visit NVIDIA API Catalog
- Register NVIDIA account
- Generate API key
- Configure access permissions
- Save the key to environment variable
Use Case Configurations
High-Performance Inference
yaml
models:
- name: "high-performance"
provider: "nvidia"
model: "nv-llama2-70b"
apiKey: "${NVIDIA_API_KEY}"
roles: ["chat", "edit"]
defaultCompletionOptions:
temperature: 0.5
maxTokens: 4096Code Generation
yaml
models:
- name: "code-gen"
provider: "nvidia"
model: "nv-code-llama-34b"
apiKey: "${NVIDIA_API_KEY}"
roles: ["edit", "apply"]
defaultCompletionOptions:
temperature: 0.2
maxTokens: 2048Fast Response
yaml
models:
- name: "fast-inference"
provider: "nvidia"
model: "nv-mistral-7b"
apiKey: "${NVIDIA_API_KEY}"
roles: ["chat", "autocomplete"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2048GPU Optimization Features
TRITON Inference Server
NVIDIA uses TRITON inference server to optimize model performance, providing:
- Batch processing optimization
- Dynamic batching
- Model concurrency
TensorRT Acceleration
- FP16/INT8 precision optimization
- Layer fusion optimization
- Kernel auto-tuning
Performance Metrics
Inference Speed
- NIM Optimization: Up to 3x inference acceleration
- Batch Processing: Supports massive concurrent requests
- Low Latency: Millisecond-level response time
Scalability
- Horizontal Scaling: Supports multi-instance deployment
- Vertical Scaling: Supports dynamic resource adjustment
- Auto-Scaling: Adjusts automatically based on load
Troubleshooting
Common Issues
GPU Out of Memory
- Reduce batch size
- Use model quantization
- Increase VRAM resources
High Latency
- Check network connection
- Optimize batch configuration
- Enable model caching
Low Throughput
- Increase concurrency
- Optimize model configuration
- Scale resources
Debugging Steps
- Verify API key format and validity
- Check network connection and firewall settings
- Monitor GPU utilization
- View error logs
- Confirm quotas and limits
Best Practices
1. Model Selection
- Choose appropriate model based on hardware resources
- Consider latency and throughput requirements
- Optimize model precision and speed balance
2. Resource Management
- Monitor GPU utilization
- Optimize batch size
- Allocate memory resources appropriately
3. Security Compliance
- Enable data encryption
- Implement access controls
- Maintain audit logs
4. Performance Optimization
- Enable streaming responses
- Implement request caching
- Use batch processing
- Optimize model loading