Autocomplete Role
The autocomplete role is specialized for real-time code completion and smart suggestions, providing fast and accurate code recommendations.
Configuration
Configure in config.yaml or ~/.bytebuddy/config.yaml:
yaml
models:
- name: "autocomplete-engine"
provider: "together"
model: "codellama/CodeLlama-13b-Instruct-hf"
apiKey: "${TOGETHER_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.1
maxTokens: 256Core Features
Fast Response
- Low Latency: Millisecond-level response time
- Real-Time Completion: Instant code suggestions
- Lightweight Models: Optimized small models
Context Awareness
- File Understanding: Understands current file type and structure
- Syntax Analysis: Supports multiple programming language syntax
- Project Context: Considers entire project structure
Intelligent Prediction
- Code Patterns: Recognizes common code patterns
- API Suggestions: Recommends API calls and methods
- Variable Prediction: Predicts variable names and types
Supported Programming Languages
Mainstream Languages
- JavaScript/TypeScript: Complete frontend development support
- Python: Data science and web development
- Java: Enterprise application development
- C++/C: System-level programming
- Go: Cloud-native and backend development
- Rust: Systems programming and performance optimization
Other Languages
- PHP: Web development
- Ruby: Scripting and web development
- Swift: iOS development
- Kotlin: Android and server development
- SQL: Database queries
- Shell: Script writing
Configuration Examples
JavaScript Autocomplete
yaml
models:
- name: "autocomplete-js"
provider: "together"
model: "codellama/CodeLlama-13b-Instruct-hf"
apiKey: "${TOGETHER_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.2
maxTokens: 128Python Autocomplete
yaml
models:
- name: "autocomplete-python"
provider: "together"
model: "codellama/CodeLlama-7b-Instruct-hf"
apiKey: "${TOGETHER_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.1
maxTokens: 256Universal Multi-Language Configuration
yaml
models:
- name: "autocomplete-universal"
provider: "together"
model: "bigcode/starcoder"
apiKey: "${TOGETHER_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.15
maxTokens: 200Performance Optimization
Basic Optimization Configuration
yaml
models:
- name: "autocomplete-optimized"
provider: "together"
model: "codellama/CodeLlama-13b-Instruct-hf"
apiKey: "${TOGETHER_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.1
maxTokens: 128Fast Response Configuration
yaml
models:
- name: "autocomplete-fast"
provider: "groq"
model: "llama-3.1-8b-instant"
apiKey: "${GROQ_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.1
maxTokens: 128Best Practices
1. Choose the Right Model
- Use lightweight models for fast response
- Consider language-specific models
- Balance quality and performance
2. Optimize Parameter Settings
- Use lower temperature values (0.05-0.2)
- Limit maximum token count (128-256)
- Set reasonable timeout periods
3. Context Management
- Keep context concise
- Focus on relevant code areas
- Avoid excessively long history
4. Performance Monitoring
- Monitor response time
- Track completion quality
- Optimize model selection
Troubleshooting
Common Issues
Slow Response
- Check model size and hardware resources
- Consider using faster providers
- Reduce context length
Inaccurate Suggestions
- Adjust temperature parameters
- Add more context information
- Try different models
High Costs
- Use open-source models
- Optimize request frequency
- Set reasonable token limits
Environment Variables
bash
# ~/.bashrc or ~/.zshrc
export TOGETHER_API_KEY="your-together-api-key"
export GROQ_API_KEY="your-groq-api-key"Through proper autocomplete role configuration, you can significantly improve coding efficiency and development experience.