MCP (Model Context Protocol) Deep Dive
Model Context Protocol (MCP) is the protocol used by ByteBuddy to standardize AI model interactions, providing a unified interface to access various AI services and features.
MCP Overview
Protocol Goals
MCP aims to achieve:
- Standardized Interface: Unified API calling method
- Provider Agnostic: Support multiple AI providers
- Feature Extension: Easy to add new features
- Compatibility: Backward compatibility guarantee
Core Concepts
- Provider: AI service provider
- Model: Specific AI model
- Role: Model usage scenario
- Capability: Features supported by model
Basic Configuration
Standard MCP Configuration
yaml
models:
- name: "mcp-chat-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
capabilities: ["tool_use"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2000Configuration Explanation
- name: Unique identifier for the model
- provider: AI service provider
- model: Specific model name
- apiKey: API authentication key
- roles: Roles supported by the model
- capabilities: Special abilities of the model
Role System
Supported Roles
yaml
models:
# Chat role
- name: "chat-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2000
# Edit role
- name: "edit-model"
provider: "anthropic"
model: "claude-3-sonnet"
apiKey: "${ANTHROPIC_API_KEY}"
roles: ["edit"]
defaultCompletionOptions:
temperature: 0.3
maxTokens: 4000
# Autocomplete role
- name: "autocomplete-model"
provider: "together"
model: "codellama/CodeLlama-13b-Instruct-hf"
apiKey: "${TOGETHER_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.1
maxTokens: 256
# Apply role
- name: "apply-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["apply"]
defaultCompletionOptions:
temperature: 0.5
maxTokens: 4096
# Embed role
- name: "embed-model"
provider: "openai"
model: "text-embedding-3-large"
apiKey: "${OPENAI_API_KEY}"
roles: ["embed"]
# Rerank role
- name: "rerank-model"
provider: "cohere"
model: "rerank-english-v3.0"
apiKey: "${COHERE_API_KEY}"
roles: ["rerank"]Multi-Role Configuration
A single model can support multiple roles:
yaml
models:
- name: "versatile-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat", "edit", "apply"]
defaultCompletionOptions:
temperature: 0.6
maxTokens: 4000Capability System
Tool Use Capability
yaml
models:
- name: "tool-capable-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
capabilities: ["tool_use"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4000Tool use includes:
- Function Calling: Call external functions
- API Integration: Access external APIs
- Data Retrieval: Query databases
- File Operations: Read and write files
Image Input Capability
yaml
models:
- name: "vision-model"
provider: "openai"
model: "gpt-4-vision-preview"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
capabilities: ["image_input"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4096Next Edit Capability
yaml
models:
- name: "next-edit-model"
provider: "anthropic"
model: "claude-3-sonnet"
apiKey: "${ANTHROPIC_API_KEY}"
roles: ["edit"]
capabilities: ["next_edit"]
defaultCompletionOptions:
temperature: 0.3
maxTokens: 4000Request Options
Basic Request Options
yaml
models:
- name: "configured-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
requestOptions:
timeout: 60000 # 60 seconds
maxRetries: 3
retryDelay: 1000 # 1 second
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2000Custom Request Headers
yaml
models:
- name: "custom-headers-model"
provider: "openai-compatible"
model: "custom-model"
apiKey: "${API_KEY}"
apiBase: "https://api.example.com/v1"
requestOptions:
headers:
"X-Custom-Header": "value"
"User-Agent": "ByteBuddy/1.0"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2000Completion Options
Standard Completion Options
yaml
models:
- name: "tuned-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7 # Creativity (0-2)
maxTokens: 2000 # Maximum tokens
topP: 0.9 # Nucleus sampling
frequencyPenalty: 0.0 # Frequency penalty (-2 to 2)
presencePenalty: 0.0 # Presence penalty (-2 to 2)Advanced Completion Options
yaml
models:
- name: "advanced-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4000
topP: 0.95
topK: 50
frequencyPenalty: 0.1
presencePenalty: 0.1
stopSequences: ["\n\n", "###"]Provider-Specific Configuration
Azure OpenAI
yaml
models:
- name: "azure-model"
provider: "azure-openai"
model: "gpt-4"
apiKey: "${AZURE_OPENAI_API_KEY}"
apiBase: "${AZURE_OPENAI_API_BASE}"
env:
deploymentName: "gpt-4-deployment"
apiVersion: "2024-02-15-preview"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4000AWS Bedrock
yaml
models:
- name: "bedrock-model"
provider: "bedrock"
model: "anthropic.claude-3-sonnet-20240229-v1:0"
env:
region: "us-east-1"
accessKeyId: "${AWS_ACCESS_KEY_ID}"
secretAccessKey: "${AWS_SECRET_ACCESS_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 4096Google Vertex AI
yaml
models:
- name: "vertexai-model"
provider: "vertexai"
model: "gemini-pro"
env:
projectId: "${GOOGLE_CLOUD_PROJECT_ID}"
location: "us-central1"
credentials: "${GOOGLE_APPLICATION_CREDENTIALS}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2048MCP Extensions
Custom Providers
yaml
models:
- name: "custom-provider"
provider: "openai-compatible"
model: "custom-model"
apiKey: "${CUSTOM_API_KEY}"
apiBase: "https://api.custom.com/v1"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2000Plugin System
ByteBuddy supports MCP plugin integration:
- Tool Plugins: Add new tool features
- Provider Plugins: Support new AI providers
- Capability Plugins: Extend model capabilities
- Middleware Plugins: Request/response processing
Best Practices
1. Model Selection
- Choose appropriate model based on task
- Balance performance and cost
- Consider latency requirements
- Evaluate quality needs
2. Parameter Tuning
- Start with default values
- Adjust based on feedback
- Document best configurations
- Regularly re-evaluate
3. Error Handling
- Configure appropriate timeouts
- Implement retry mechanisms
- Log error messages
- Provide fallback options
4. Security
- Use environment variables for keys
- Limit API call frequency
- Monitor usage
- Rotate keys regularly
Troubleshooting
Common Issues
Invalid Configuration
Solutions:
- Check YAML syntax
- Verify required fields
- Confirm environment variables set
API Call Failures
Solutions:
- Verify API key
- Check network connectivity
- Confirm model name correct
- Review provider status
Performance Issues
Solutions:
- Optimize token limits
- Adjust timeout settings
- Consider using faster models
- Implement caching strategy
Environment Variables
bash
# ~/.bashrc or ~/.zshrc
export OPENAI_API_KEY="your-openai-api-key"
export ANTHROPIC_API_KEY="your-anthropic-api-key"
export TOGETHER_API_KEY="your-together-api-key"
export COHERE_API_KEY="your-cohere-api-key"
# Cloud service providers
export AZURE_OPENAI_API_KEY="your-azure-key"
export AZURE_OPENAI_API_BASE="https://your-resource.openai.azure.com"
export AWS_ACCESS_KEY_ID="your-aws-access-key"
export AWS_SECRET_ACCESS_KEY="your-aws-secret-key"
export GOOGLE_CLOUD_PROJECT_ID="your-project-id"
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/credentials.json"Through understanding and correctly using MCP, you can fully leverage ByteBuddy's powerful features to build an efficient AI-assisted development environment.