Model Roles Introduction
ByteBuddy's model role system allows you to select the most suitable model configuration for different task types, optimizing performance and cost-effectiveness.
What are Model Roles?
Model roles are pre-configured model settings for specific task types, including:
- Model selection
- Parameter tuning
- Context management
- Performance optimization
Supported Role Types
💬 Chat
For conversation and interactive tasks:
- Natural language understanding
- Contextual dialogue
- Multi-turn conversations
- User support
🔧 Autocomplete
For code and text completion:
- Real-time code suggestions
- Smart text completion
- Context-aware completion
- Fast response
✏️ Edit
For text and code editing:
- Content refactoring
- Format adjustment
- Syntax correction
- Style optimization
🎯 Apply
For specific application scenarios:
- Code generation
- Document creation
- Data processing
- Automated tasks
🔍 Embeddings
For vectorization and semantic search:
- Text vectorization
- Semantic similarity
- Retrieval augmentation
- Clustering analysis
📊 Reranking
For result sorting and filtering:
- Relevance ranking
- Quality assessment
- Priority adjustment
- Precise matching
Role Configuration Structure
Basic Configuration Example
Configure model roles in config.yaml:
yaml
models:
- name: "chat-assistant"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2000
topP: 0.9
- name: "code-editor"
provider: "anthropic"
model: "claude-3-sonnet"
apiKey: "${ANTHROPIC_API_KEY}"
roles: ["edit", "apply"]
defaultCompletionOptions:
temperature: 0.3
maxTokens: 4000
- name: "autocomplete-engine"
provider: "together"
model: "codellama/CodeLlama-13b-Instruct-hf"
apiKey: "${TOGETHER_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.1
maxTokens: 256Multi-Role Configuration
A single model can serve multiple roles:
yaml
models:
- name: "versatile-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat", "edit", "apply"]
defaultCompletionOptions:
temperature: 0.5
maxTokens: 4096Role-Specific Configuration
Chat Role Configuration
yaml
models:
- name: "chat-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["chat"]
defaultCompletionOptions:
temperature: 0.7
maxTokens: 2000
topP: 0.9Edit Role Configuration
yaml
models:
- name: "edit-model"
provider: "anthropic"
model: "claude-3-sonnet"
apiKey: "${ANTHROPIC_API_KEY}"
roles: ["edit"]
defaultCompletionOptions:
temperature: 0.2
maxTokens: 4000Autocomplete Role Configuration
yaml
models:
- name: "autocomplete-model"
provider: "together"
model: "codellama/CodeLlama-13b-Instruct-hf"
apiKey: "${TOGETHER_API_KEY}"
roles: ["autocomplete"]
defaultCompletionOptions:
temperature: 0.1
maxTokens: 256Apply Role Configuration
yaml
models:
- name: "apply-model"
provider: "openai"
model: "gpt-4"
apiKey: "${OPENAI_API_KEY}"
roles: ["apply"]
defaultCompletionOptions:
temperature: 0.3
maxTokens: 4096Embed Role Configuration
yaml
models:
- name: "embed-model"
provider: "openai"
model: "text-embedding-3-large"
apiKey: "${OPENAI_API_KEY}"
roles: ["embed"]Rerank Role Configuration
yaml
models:
- name: "rerank-model"
provider: "cohere"
model: "rerank-english-v3.0"
apiKey: "${COHERE_API_KEY}"
roles: ["rerank"]Best Practices
1. Role Design Principles
- Single Responsibility: Each role focuses on specific tasks
- Clear Boundaries: Define clear applicable scenarios
- Performance Optimization: Balance quality and efficiency
2. Configuration Management
- Version Control: Track role configuration changes
- Test Validation: Ensure role behavior meets expectations
- Documentation: Keep configuration documentation updated
3. Usage Guidelines
- Start Small: Begin with predefined roles
- Gradual Customization: Adjust based on actual needs
- Continuous Optimization: Improve roles based on feedback
Next Steps
- Learn About Roles: Review specific role type documentation
- Configure Models: Set up model roles in
config.yaml - Test and Adjust: Continuously improve based on usage
- Share Experience: Share quality configurations with team