Skip to content

持续 AI 准备度评估

持续 AI 准备度评估帮助组织评估其 AI 项目的成熟度和就绪程度,识别改进机会并制定发展路线图。

评估框架

评估维度

json
{
  "readinessAssessment": {
    "dimensions": {
      "technology": {
        "infrastructure": "基础设施成熟度",
        "data_quality": "数据质量与治理",
        "model_management": "模型管理与版本控制",
        "tooling": "工具链与自动化"
      },
      "process": {
        "development_lifecycle": "开发生命周期",
        "testing_strategy": "测试策略",
        "deployment_pipeline": "部署流水线",
        "monitoring_ops": "监控与运维"
      },
      "organization": {
        "leadership": "领导层支持",
        "talent": "人才与技能",
        "culture": "组织文化",
        "governance": "治理与合规"
      },
      "business": {
        "strategy": "AI 战略对齐",
        "roi": "投资回报",
        "risk_management": "风险管理",
        "customer_value": "客户价值创造"
      }
    }
  }
}

成熟度等级

json
{
  "maturityLevels": {
    "level_0": {
      "name": "初始阶段",
      "score": "0-25",
      "description": "无标准化流程,依赖个人英雄",
      "characteristics": ["临时性开发", "缺乏文档", "手动流程", "重复性问题"]
    },
    "level_1": {
      "name": "可重复",
      "score": "26-50",
      "description": "基本流程建立,但缺乏集成",
      "characteristics": ["基本工具使用", "简单文档", "局部自动化", "经验积累"]
    },
    "level_2": {
      "name": "已定义",
      "score": "51-75",
      "description": "标准化流程,文档完善",
      "characteristics": ["标准化流程", "完善文档", "工具集成", "可重复结果"]
    },
    "level_3": {
      "name": "已管理",
      "score": "76-90",
      "description": "流程可度量,持续优化",
      "characteristics": ["度量和监控", "持续改进", "自动化测试", "质量保证"]
    },
    "level_4": {
      "name": "优化阶段",
      "score": "91-100",
      "description": "全面自动化,持续创新",
      "characteristics": ["全面自动化", "数据驱动", "预测性维护", "持续创新"]
    }
  }
}

详细评估指标

技术维度评估

基础设施成熟度

json
{
  "infrastructureMaturity": {
    "computing_resources": {
      "level_0": "本地开发,无标准化",
      "level_1": "云服务器,手动配置",
      "level_2": "容器化,基础编排",
      "level_3": "Kubernetes,自动扩缩容",
      "level_4": "无服务器,弹性计算"
    },
    "storage_systems": {
      "level_0": "本地文件系统",
      "level_1": "基础云存储",
      "level_2": "分层存储策略",
      "level_3": "智能数据管理",
      "level_4": "AI 优化存储"
    },
    "network_infrastructure": {
      "level_0": "基础网络连接",
      "level_1": "负载均衡",
      "level_2": "CDN 集成",
      "level_3": "智能路由",
      "level_4": "边缘计算"
    }
  }
}

数据质量与治理

json
{
  "dataGovernance": {
    "data_quality": {
      "level_0": "无数据质量检查",
      "level_1": "基础验证规则",
      "level_2": "自动化测试",
      "level_3": "持续监控",
      "level_4": "自愈数据系统"
    },
    "data_lineage": {
      "level_0": "无追溯能力",
      "level_1": "基础日志记录",
      "level_2": "元数据管理",
      "level_3": "端到端追踪",
      "level_4": "实时血缘分析"
    },
    "privacy_security": {
      "level_0": "无隐私保护",
      "level_1": "基础加密",
      "level_2": "访问控制",
      "level_3": "合规框架",
      "level_4": "隐私设计"
    }
  }
}

流程维度评估

开发生命周期

json
{
  "developmentLifecycle": {
    "requirements_management": {
      "level_0": "口头需求",
      "level_1": "文档化需求",
      "level_2": "版本控制",
      "level_3": "需求追踪",
      "level_4": "智能需求分析"
    },
    "code_development": {
      "level_0": "自由开发",
      "level_1": "编码标准",
      "level_2": "代码审查",
      "level_3": "自动化检查",
      "level_4": "AI 辅助开发"
    },
    "version_control": {
      "level_0": "无版本控制",
      "level_1": "基础 Git",
      "level_2": "分支策略",
      "level_3": "自动化合并",
      "level_4": "智能版本管理"
    }
  }
}

测试策略

json
{
  "testingStrategy": {
    "unit_testing": {
      "level_0": "无单元测试",
      "level_1": "基础测试用例",
      "level_2": "测试覆盖率",
      "level_3": "TDD 实践",
      "level_4": "AI 生成测试"
    },
    "integration_testing": {
      "level_0": "手动集成测试",
      "level_1": "自动化集成",
      "level_2": "契约测试",
      "level_3": "服务虚拟化",
      "level_4": "混沌工程"
    },
    "model_validation": {
      "level_0": "手动验证",
      "level_1": "自动化指标",
      "level_2": "持续验证",
      "level_3": "A/B 测试",
      "level_4": "自适应验证"
    }
  }
}

组织维度评估

人才与技能

json
{
  "talentSkills": {
    "technical_expertise": {
      "level_0": "基础编程",
      "level_1": "AI/ML 基础",
      "level_2": "专业工具掌握",
      "level_3": "架构设计",
      "level_4": "创新能力"
    },
    "domain_knowledge": {
      "level_0": "无领域知识",
      "level_1": "基础了解",
      "level_2": "深入理解",
      "level_3": "专家水平",
      "level_4": "行业引领"
    },
    "collaboration": {
      "level_0": "独立工作",
      "level_1": "团队协作",
      "level_2": "跨部门协作",
      "level_3": "外部协作",
      "level_4": "生态系统构建"
    }
  }
}

业务维度评估

AI 战略对齐

json
{
  "aiStrategyAlignment": {
    "strategic_planning": {
      "level_0": "无 AI 战略",
      "level_1": "初步构想",
      "level_2": "制定计划",
      "level_3": "战略对齐",
      "level_4": "战略引领"
    },
    "investment_priority": {
      "level_0": "随机投资",
      "level_1": "项目驱动",
      "level_2": "组合管理",
      "level_3": "价值导向",
      "level_4": "战略投资"
    },
    "innovation_culture": {
      "level_0": "抵制变化",
      "level_1": "被动接受",
      "level_2": "主动探索",
      "level_3": "鼓励创新",
      "level_4": "创新引领"
    }
  }
}

评估流程

准备阶段

json
{
  "preparationPhase": {
    "scope_definition": {
      "assessment_scope": "确定评估范围",
      "stakeholder_identification": "识别利益相关者",
      "timeline_planning": "制定时间计划",
      "resource_allocation": "分配资源"
    },
    "data_collection": {
      "document_review": "文档审查",
      "interviews": "关键人员访谈",
      "surveys": "问卷调查",
      "metrics_gathering": "指标收集"
    },
    "team_formation": {
      "assessment_team": "组建评估团队",
      "roles_responsibilities": "明确角色职责",
      "training": "评估培训",
      "communication_plan": "沟通计划"
    }
  }
}

执行阶段

json
{
  "executionPhase": {
    "data_analysis": {
      "quantitative_analysis": "定量分析",
      "qualitative_analysis": "定性分析",
      "gap_analysis": "差距分析",
      "benchmarking": "基准比较"
    },
    "scoring": {
      "dimension_scoring": "维度评分",
      "level_determination": "等级确定",
      "weighting": "权重分配",
      "aggregation": "结果汇总"
    },
    "validation": {
      "peer_review": "同行评审",
      "stakeholder_validation": "利益相关者验证",
      "expert_consultation": "专家咨询",
      "feedback_incorporation": "反馈整合"
    }
  }
}

报告阶段

json
{
  "reportingPhase": {
    "results_synthesis": {
      "executive_summary": "执行摘要",
      "detailed_findings": "详细发现",
      "maturity_levels": "成熟度等级",
      "key_insights": "关键洞察"
    },
    "recommendations": {
      "prioritized_actions": "优先行动",
      "improvement_roadmap": "改进路线图",
      "resource_requirements": "资源需求",
      "success_metrics": "成功指标"
    },
    "presentation": {
      "stakeholder_presentation": "利益相关者汇报",
      "workshops": "工作坊",
      "discussion_sessions": "讨论会",
      "action_planning": "行动规划"
    }
  }
}

改进路线图

短期目标(3-6个月)

json
{
  "shortTermGoals": {
    "quick_wins": [
      "建立基础监控",
      "制定编码标准",
      "实施自动化测试",
      "优化数据质量"
    ],
    "skill_development": [
      "AI 基础培训",
      "工具使用培训",
      "最佳实践分享",
      "外部认证"
    ],
    "tool_implementation": [
      "版本控制工具",
      "CI/CD 流水线",
      "测试框架",
      "监控工具"
    ]
  }
}

中期目标(6-18个月)

json
{
  "mediumTermGoals": {
    "process_improvement": [
      "标准化开发流程",
      "实施 DevOps 实践",
      "建立测试策略",
      "完善治理框架"
    ],
    "infrastructure_upgrade": [
      "容器化部署",
      "云原生架构",
      "数据平台建设",
      "安全加固"
    ],
    "capability_building": [
      "专业团队建设",
      "AI 卓越中心",
      "创新实验室",
      "外部合作"
    ]
  }
}

长期目标(18个月以上)

json
{
  "longTermGoals": {
    "strategic_initiatives": [
      "AI 驱动转型",
      "业务模式创新",
      "生态系统构建",
      "行业引领"
    ],
    "operational_excellence": [
      "全面自动化",
      "智能运维",
      "预测性管理",
      "持续创新"
    ],
    "organizational_transformation": [
      "文化变革",
      "人才战略",
      "治理体系",
      "可持续发展"
    ]
  }
}

评估工具和模板

评估问卷模板

json
{
  "assessmentQuestionnaire": {
    "technology_section": {
      "infrastructure": [
        "您的计算资源是否支持弹性扩缩容?",
        "数据存储是否分层管理?",
        "网络是否支持全球分布?"
      ],
      "data_quality": [
        "是否有数据质量监控?",
        "数据血缘是否可追踪?",
        "隐私保护措施是否完善?"
      ]
    },
    "process_section": {
      "development": [
        "是否有标准化的开发流程?",
        "代码审查是否强制执行?",
        "版本控制策略是否完善?"
      ],
      "testing": [
        "测试覆盖率是否达标?",
        "是否有自动化测试?",
        "模型性能是否持续验证?"
      ]
    }
  }
}

评分卡

json
{
  "scoringCard": {
    "dimensions": [
      {
        "name": "技术基础设施",
        "weight": 0.25,
        "criteria": [
          { "name": "计算资源", "score": 0, "weight": 0.3 },
          { "name": "存储系统", "score": 0, "weight": 0.3 },
          { "name": "网络架构", "score": 0, "weight": 0.4 }
        ]
      }
    ],
    "overall_score": "calculated",
    "maturity_level": "determined"
  }
}

最佳实践

评估实施

  1. 全面参与: 确保各层级人员的积极参与
  2. 数据驱动: 基于客观数据进行评估
  3. 持续改进: 将评估作为持续改进的工具
  4. 透明沟通: 保持评估过程的透明度

结果运用

  1. 行动计划: 基于评估结果制定具体行动计划
  2. 资源分配: 合理分配资源支持改进
  3. 进度跟踪: 定期跟踪改进进度
  4. 定期重评: 建立定期重评估机制

通过系统性的持续 AI 准备度评估,组织可以明确自身的 AI 成熟度水平,制定科学的改进路径,最终实现 AI 驱动的数字化转型。