持续 AI 准备度评估
持续 AI 准备度评估帮助组织评估其 AI 项目的成熟度和就绪程度,识别改进机会并制定发展路线图。
评估框架
评估维度
json
{
"readinessAssessment": {
"dimensions": {
"technology": {
"infrastructure": "基础设施成熟度",
"data_quality": "数据质量与治理",
"model_management": "模型管理与版本控制",
"tooling": "工具链与自动化"
},
"process": {
"development_lifecycle": "开发生命周期",
"testing_strategy": "测试策略",
"deployment_pipeline": "部署流水线",
"monitoring_ops": "监控与运维"
},
"organization": {
"leadership": "领导层支持",
"talent": "人才与技能",
"culture": "组织文化",
"governance": "治理与合规"
},
"business": {
"strategy": "AI 战略对齐",
"roi": "投资回报",
"risk_management": "风险管理",
"customer_value": "客户价值创造"
}
}
}
}成熟度等级
json
{
"maturityLevels": {
"level_0": {
"name": "初始阶段",
"score": "0-25",
"description": "无标准化流程,依赖个人英雄",
"characteristics": ["临时性开发", "缺乏文档", "手动流程", "重复性问题"]
},
"level_1": {
"name": "可重复",
"score": "26-50",
"description": "基本流程建立,但缺乏集成",
"characteristics": ["基本工具使用", "简单文档", "局部自动化", "经验积累"]
},
"level_2": {
"name": "已定义",
"score": "51-75",
"description": "标准化流程,文档完善",
"characteristics": ["标准化流程", "完善文档", "工具集成", "可重复结果"]
},
"level_3": {
"name": "已管理",
"score": "76-90",
"description": "流程可度量,持续优化",
"characteristics": ["度量和监控", "持续改进", "自动化测试", "质量保证"]
},
"level_4": {
"name": "优化阶段",
"score": "91-100",
"description": "全面自动化,持续创新",
"characteristics": ["全面自动化", "数据驱动", "预测性维护", "持续创新"]
}
}
}详细评估指标
技术维度评估
基础设施成熟度
json
{
"infrastructureMaturity": {
"computing_resources": {
"level_0": "本地开发,无标准化",
"level_1": "云服务器,手动配置",
"level_2": "容器化,基础编排",
"level_3": "Kubernetes,自动扩缩容",
"level_4": "无服务器,弹性计算"
},
"storage_systems": {
"level_0": "本地文件系统",
"level_1": "基础云存储",
"level_2": "分层存储策略",
"level_3": "智能数据管理",
"level_4": "AI 优化存储"
},
"network_infrastructure": {
"level_0": "基础网络连接",
"level_1": "负载均衡",
"level_2": "CDN 集成",
"level_3": "智能路由",
"level_4": "边缘计算"
}
}
}数据质量与治理
json
{
"dataGovernance": {
"data_quality": {
"level_0": "无数据质量检查",
"level_1": "基础验证规则",
"level_2": "自动化测试",
"level_3": "持续监控",
"level_4": "自愈数据系统"
},
"data_lineage": {
"level_0": "无追溯能力",
"level_1": "基础日志记录",
"level_2": "元数据管理",
"level_3": "端到端追踪",
"level_4": "实时血缘分析"
},
"privacy_security": {
"level_0": "无隐私保护",
"level_1": "基础加密",
"level_2": "访问控制",
"level_3": "合规框架",
"level_4": "隐私设计"
}
}
}流程维度评估
开发生命周期
json
{
"developmentLifecycle": {
"requirements_management": {
"level_0": "口头需求",
"level_1": "文档化需求",
"level_2": "版本控制",
"level_3": "需求追踪",
"level_4": "智能需求分析"
},
"code_development": {
"level_0": "自由开发",
"level_1": "编码标准",
"level_2": "代码审查",
"level_3": "自动化检查",
"level_4": "AI 辅助开发"
},
"version_control": {
"level_0": "无版本控制",
"level_1": "基础 Git",
"level_2": "分支策略",
"level_3": "自动化合并",
"level_4": "智能版本管理"
}
}
}测试策略
json
{
"testingStrategy": {
"unit_testing": {
"level_0": "无单元测试",
"level_1": "基础测试用例",
"level_2": "测试覆盖率",
"level_3": "TDD 实践",
"level_4": "AI 生成测试"
},
"integration_testing": {
"level_0": "手动集成测试",
"level_1": "自动化集成",
"level_2": "契约测试",
"level_3": "服务虚拟化",
"level_4": "混沌工程"
},
"model_validation": {
"level_0": "手动验证",
"level_1": "自动化指标",
"level_2": "持续验证",
"level_3": "A/B 测试",
"level_4": "自适应验证"
}
}
}组织维度评估
人才与技能
json
{
"talentSkills": {
"technical_expertise": {
"level_0": "基础编程",
"level_1": "AI/ML 基础",
"level_2": "专业工具掌握",
"level_3": "架构设计",
"level_4": "创新能力"
},
"domain_knowledge": {
"level_0": "无领域知识",
"level_1": "基础了解",
"level_2": "深入理解",
"level_3": "专家水平",
"level_4": "行业引领"
},
"collaboration": {
"level_0": "独立工作",
"level_1": "团队协作",
"level_2": "跨部门协作",
"level_3": "外部协作",
"level_4": "生态系统构建"
}
}
}业务维度评估
AI 战略对齐
json
{
"aiStrategyAlignment": {
"strategic_planning": {
"level_0": "无 AI 战略",
"level_1": "初步构想",
"level_2": "制定计划",
"level_3": "战略对齐",
"level_4": "战略引领"
},
"investment_priority": {
"level_0": "随机投资",
"level_1": "项目驱动",
"level_2": "组合管理",
"level_3": "价值导向",
"level_4": "战略投资"
},
"innovation_culture": {
"level_0": "抵制变化",
"level_1": "被动接受",
"level_2": "主动探索",
"level_3": "鼓励创新",
"level_4": "创新引领"
}
}
}评估流程
准备阶段
json
{
"preparationPhase": {
"scope_definition": {
"assessment_scope": "确定评估范围",
"stakeholder_identification": "识别利益相关者",
"timeline_planning": "制定时间计划",
"resource_allocation": "分配资源"
},
"data_collection": {
"document_review": "文档审查",
"interviews": "关键人员访谈",
"surveys": "问卷调查",
"metrics_gathering": "指标收集"
},
"team_formation": {
"assessment_team": "组建评估团队",
"roles_responsibilities": "明确角色职责",
"training": "评估培训",
"communication_plan": "沟通计划"
}
}
}执行阶段
json
{
"executionPhase": {
"data_analysis": {
"quantitative_analysis": "定量分析",
"qualitative_analysis": "定性分析",
"gap_analysis": "差距分析",
"benchmarking": "基准比较"
},
"scoring": {
"dimension_scoring": "维度评分",
"level_determination": "等级确定",
"weighting": "权重分配",
"aggregation": "结果汇总"
},
"validation": {
"peer_review": "同行评审",
"stakeholder_validation": "利益相关者验证",
"expert_consultation": "专家咨询",
"feedback_incorporation": "反馈整合"
}
}
}报告阶段
json
{
"reportingPhase": {
"results_synthesis": {
"executive_summary": "执行摘要",
"detailed_findings": "详细发现",
"maturity_levels": "成熟度等级",
"key_insights": "关键洞察"
},
"recommendations": {
"prioritized_actions": "优先行动",
"improvement_roadmap": "改进路线图",
"resource_requirements": "资源需求",
"success_metrics": "成功指标"
},
"presentation": {
"stakeholder_presentation": "利益相关者汇报",
"workshops": "工作坊",
"discussion_sessions": "讨论会",
"action_planning": "行动规划"
}
}
}改进路线图
短期目标(3-6个月)
json
{
"shortTermGoals": {
"quick_wins": [
"建立基础监控",
"制定编码标准",
"实施自动化测试",
"优化数据质量"
],
"skill_development": [
"AI 基础培训",
"工具使用培训",
"最佳实践分享",
"外部认证"
],
"tool_implementation": [
"版本控制工具",
"CI/CD 流水线",
"测试框架",
"监控工具"
]
}
}中期目标(6-18个月)
json
{
"mediumTermGoals": {
"process_improvement": [
"标准化开发流程",
"实施 DevOps 实践",
"建立测试策略",
"完善治理框架"
],
"infrastructure_upgrade": [
"容器化部署",
"云原生架构",
"数据平台建设",
"安全加固"
],
"capability_building": [
"专业团队建设",
"AI 卓越中心",
"创新实验室",
"外部合作"
]
}
}长期目标(18个月以上)
json
{
"longTermGoals": {
"strategic_initiatives": [
"AI 驱动转型",
"业务模式创新",
"生态系统构建",
"行业引领"
],
"operational_excellence": [
"全面自动化",
"智能运维",
"预测性管理",
"持续创新"
],
"organizational_transformation": [
"文化变革",
"人才战略",
"治理体系",
"可持续发展"
]
}
}评估工具和模板
评估问卷模板
json
{
"assessmentQuestionnaire": {
"technology_section": {
"infrastructure": [
"您的计算资源是否支持弹性扩缩容?",
"数据存储是否分层管理?",
"网络是否支持全球分布?"
],
"data_quality": [
"是否有数据质量监控?",
"数据血缘是否可追踪?",
"隐私保护措施是否完善?"
]
},
"process_section": {
"development": [
"是否有标准化的开发流程?",
"代码审查是否强制执行?",
"版本控制策略是否完善?"
],
"testing": [
"测试覆盖率是否达标?",
"是否有自动化测试?",
"模型性能是否持续验证?"
]
}
}
}评分卡
json
{
"scoringCard": {
"dimensions": [
{
"name": "技术基础设施",
"weight": 0.25,
"criteria": [
{ "name": "计算资源", "score": 0, "weight": 0.3 },
{ "name": "存储系统", "score": 0, "weight": 0.3 },
{ "name": "网络架构", "score": 0, "weight": 0.4 }
]
}
],
"overall_score": "calculated",
"maturity_level": "determined"
}
}最佳实践
评估实施
- 全面参与: 确保各层级人员的积极参与
- 数据驱动: 基于客观数据进行评估
- 持续改进: 将评估作为持续改进的工具
- 透明沟通: 保持评估过程的透明度
结果运用
- 行动计划: 基于评估结果制定具体行动计划
- 资源分配: 合理分配资源支持改进
- 进度跟踪: 定期跟踪改进进度
- 定期重评: 建立定期重评估机制
通过系统性的持续 AI 准备度评估,组织可以明确自身的 AI 成熟度水平,制定科学的改进路径,最终实现 AI 驱动的数字化转型。