Sentry MCP 错误监控
本指南介绍如何使用 Sentry MCP 来构建智能错误监控和调试系统,让 ByteBuddy 能够自动化错误处理流程。
概述
Sentry MCP 提供了对 Sentry 错误监控平台的深度集成,让 ByteBuddy 能够:
- 自动化错误分析和分类
- 智能错误修复建议
- 性能问题检测
- 错误趋势分析
配置
1. 安装 Sentry MCP
bash
npm install -g sentry-mcp-server2. 配置 ByteBuddy
json
{
"mcpServers": {
"sentry": {
"command": "node",
"args": ["sentry-mcp-server"],
"env": {
"SENTRY_DSN": "your-sentry-dsn",
"SENTRY_AUTH_TOKEN": "your-auth-token",
"SENTRY_ORGANIZATION": "your-org",
"SENTRY_PROJECT": "your-project"
}
}
}
}使用场景
场景 1: 智能错误分析
typescript
// 智能错误分析器
class ErrorAnalyzer {
async analyzeError(errorId: string) {
// 获取错误详情
const error = await mcp.call("sentry.getError", {
id: errorId,
});
// 分析错误模式
const pattern = await this.identifyErrorPattern(error);
// 生成修复建议
const suggestions = await this.generateFixSuggestions(error, pattern);
// 查找相似错误
const similarErrors = await this.findSimilarErrors(error);
// 创建修复任务
const task = await this.createFixTask(error, suggestions);
return {
error,
pattern,
suggestions,
similarErrors,
task,
};
}
private async identifyErrorPattern(error: any) {
const analysis = {
type: this.classifyErrorType(error),
severity: this.calculateSeverity(error),
frequency: this.getErrorFrequency(error),
impact: this.calculateImpact(error),
rootCause: await this.identifyRootCause(error),
};
return analysis;
}
private async generateFixSuggestions(error: any, pattern: any) {
const suggestions = [];
// 基于错误类型的建议
switch (pattern.type) {
case "NullPointerException":
suggestions.push({
title: "添加空值检查",
code: `
// 在访问对象属性前检查空值
if (obj != null) {
return obj.property;
} else {
return defaultValue;
}
`,
confidence: 0.9,
});
break;
case "TypeError":
suggestions.push({
title: "添加类型检查",
code: `
// 确保参数类型正确
function processData(data: any): ProcessedData {
if (typeof data !== 'object') {
throw new TypeError('Expected object');
}
// 处理逻辑
}
`,
confidence: 0.85,
});
break;
}
// 基于上下文的建议
if (pattern.frequency > 10) {
suggestions.push({
title: "实现错误边界",
code: `
// React 错误边界示例
class ErrorBoundary extends React.Component {
constructor(props) {
super(props);
this.state = { hasError: false };
}
static getDerivedStateFromError(error) {
return { hasError: true };
}
render() {
if (this.state.hasError) {
return <h1>Something went wrong.</h1>;
}
return this.props.children;
}
}
`,
confidence: 0.8,
});
}
return suggestions;
}
private async createFixTask(error: any, suggestions: any[]) {
const taskTitle = `修复错误: ${error.title}`;
const taskBody = this.generateTaskBody(error, suggestions);
return await mcp.call("github.createIssue", {
owner: "your-org",
repo: "your-repo",
title: taskTitle,
body: taskBody,
labels: ["bug", "auto-generated", error.level],
assignees: this.findAssignee(error),
});
}
}场景 2: 错误趋势分析
typescript
// 错误趋势分析
class ErrorTrendAnalyzer {
async analyzeTrends(timeRange: string = "7d") {
// 获取错误数据
const errorData = await mcp.call("sentry.getIssues", {
organization: "your-org",
project: "your-project",
query: `is:unresolved timestamp:${timeRange}`,
limit: 100,
});
// 分析趋势
const trends = {
newErrors: this.analyzeNewErrors(errorData),
recurringErrors: this.analyzeRecurringErrors(errorData),
performanceIssues: this.analyzePerformanceIssues(errorData),
userImpact: this.analyzeUserImpact(errorData),
};
// 生成报告
const report = await this.generateTrendReport(trends);
// 创建趋势提醒
if (trends.newErrors.count > trends.threshold) {
await this.createTrendAlert(trends.newErrors);
}
return report;
}
private analyzeRecurringErrors(errors: any[]) {
const recurring = errors.filter(
(error) =>
error.occurrences > 5 &&
error.firstSeen < new Date(Date.now() - 7 * 24 * 60 * 60 * 1000),
);
// 按影响排序
const byImpact = recurring.sort(
(a, b) => b.userCount * b.occurrences - a.userCount * a.occurrences,
);
return {
count: recurring.length,
topIssues: byImpact.slice(0, 5),
recommendations: this.generateRecurringRecommendations(byImpact),
};
}
private generateRecurringRecommendations(recurringErrors: any[]) {
return [
{
title: "实施监控仪表板",
description: "创建实时监控仪表板来跟踪这些重复错误",
priority: "high",
},
{
title: "加强测试覆盖",
description: "为重点模块增加自动化测试,特别是边界情况",
priority: "medium",
},
{
title: "改进错误处理",
description: "实现更优雅的错误处理机制,避免向用户暴露技术细节",
priority: "medium",
},
];
}
}场景 3: 性能监控
typescript
// 性能监控系统
class PerformanceMonitor {
async monitorPerformance() {
// 获取性能数据
const performanceData = await mcp.call("sentry.getPerformanceData", {
organization: "your-org",
project: "your-project",
query: "transaction.duration:>1000ms",
statsPeriod: "24h",
});
// 分析性能问题
const analysis = {
slowTransactions: this.analyzeSlowTransactions(performanceData),
resourceUsage: this.analyzeResourceUsage(performanceData),
userExperience: this.analyzeUserExperience(performanceData),
recommendations:
await this.generatePerformanceRecommendations(performanceData),
};
// 创建性能报告
const report = await this.createPerformanceReport(analysis);
return report;
}
private analyzeSlowTransactions(data: any) {
const threshold = 3000; // 3秒阈值
const slowTransactions = data.transactions.filter(
(tx) => tx.transaction.duration > threshold,
);
// 按影响排序
const byImpact = slowTransactions
.map((tx) => ({
name: tx.transaction,
avgDuration: tx.transaction.duration,
count: tx.count,
impact: tx.count * tx.transaction.duration,
}))
.sort((a, b) => b.impact - a.impact);
return {
count: slowTransactions.length,
totalImpact: byImpact.reduce((sum, tx) => sum + tx.impact, 0),
topIssues: byImpact.slice(0, 5),
};
}
private async generatePerformanceRecommendations(data: any) {
const recommendations = [];
// 分析慢查询
if (data.databasePerformance) {
recommendations.push({
category: "database",
title: "优化数据库查询",
description: "检测到多个慢查询,建议添加索引或优化查询逻辑",
actions: ["分析查询执行计划", "添加适当的数据库索引", "考虑使用缓存层"],
});
}
// 分析资源大小
if (data.assetSize) {
recommendations.push({
category: "frontend",
title: "优化资源加载",
description: "页面资源较大,影响加载性能",
actions: ["压缩图片资源", "使用代码分割", "启用 HTTP/2 推送"],
});
}
return recommendations;
}
}自动化工作流
1: 错误处理自动化
typescript
// 错误处理自动化工作流
class ErrorWorkflow {
async setupAutomatedWorkflow() {
// 设置错误事件监听
mcp.on("sentry.error.created", async (event) => {
await this.handleError(event.error);
});
mcp.on("sentry.error.resolved", async (event) => {
await this.trackResolution(event.error);
});
}
private async handleError(error: any) {
// 错误分类
const category = await this.categorizeError(error);
// 严重性评估
const severity = this.assessSeverity(error, category);
// 自动处理决策
if (severity === "critical") {
await this.handleCriticalError(error);
} else if (severity === "high") {
await this.handleHighSeverityError(error);
} else {
await this.handleNormalError(error);
}
}
private async handleCriticalError(error: any) {
// 立即通知团队
await this.sendCriticalAlert(error);
// 尝试自动修复
const autoFix = await this.attemptAutoFix(error);
if (autoFix.success) {
await this.applyAutoFix(error, autoFix.fix);
} else {
// 创建紧急任务
await this.createUrgentTask(error);
}
}
private async sendCriticalAlert(error: any) {
const alertMessage = `
🚨 关键错误告警
错误: ${error.title}
环境: ${error.environment}
影响用户: ${error.userCount}
发生次数: ${error.occurrences}
立即查看: ${error.permalink}
此错误需要立即处理!
`;
await mcp.call("slack.sendMessage", {
channel: "#critical-alerts",
text: alertMessage,
});
await mcp.call("email.send", {
to: ["dev-team@company.com"],
subject: `关键错误: ${error.title}`,
body: alertMessage,
});
}
}2: 质量门禁
typescript
// 质量门禁系统
class QualityGate {
async checkQualityBeforeDeployment(buildInfo: any) {
const checks = [
this.checkErrorRate(),
this.checkPerformanceMetrics(),
this.checkCrashRate(),
this.checkUserComplaints(),
];
const results = await Promise.allSettled(checks);
const qualityReport = {
passed: true,
issues: [],
metrics: {},
};
results.forEach((result, index) => {
const checkName = ["errorRate", "performance", "crashRate", "complaints"][
index
];
if (result.status === "fulfilled") {
qualityReport.metrics[checkName] = result.value;
if (!result.value.passed) {
qualityReport.passed = false;
qualityReport.issues.push({
check: checkName,
issue: result.value.issue,
threshold: result.value.threshold,
actual: result.value.actual,
});
}
} else {
qualityReport.passed = false;
qualityReport.issues.push({
check: checkName,
issue: "Check failed to execute",
error: result.reason,
});
}
});
return qualityReport;
}
private async checkErrorRate() {
const errorRate = await mcp.call("sentry.getErrorRate", {
organization: "your-org",
project: "your-project",
timeRange: "24h",
});
const threshold = 0.01; // 1%
return {
passed: errorRate < threshold,
actual: errorRate,
threshold: threshold,
issue:
errorRate >= threshold
? `错误率 ${(errorRate * 100).toFixed(2)}% 超过阈值 ${(threshold * 100).toFixed(2)}%`
: null,
};
}
}最佳实践
1: 错误处理策略
typescript
// 统一错误处理
class UnifiedErrorHandler {
async handleAllErrors(error: any) {
const context = {
error,
timestamp: new Date().toISOString(),
environment: process.env.NODE_ENV,
version: process.env.APP_VERSION,
};
// 记录到 Sentry
await this.logToSentry(error, context);
// 本地日志
await this.logLocally(error, context);
// 用户友好提示
const userMessage = this.generateUserFriendlyMessage(error);
// 内部通知
if (this.shouldNotify(error)) {
await this.notifyTeam(error, context);
}
return {
handled: true,
userMessage,
trackingId: this.generateTrackingId(),
};
}
}通过 Sentry MCP,ByteBuddy 可以提供强大的错误监控和智能调试能力,让应用更加稳定可靠。